logo
menu
← Return to the newsfeed...

Testing to ensure high performance

news item image
Fuels including biofuels have rigorous testing requirements that must be carefully followed to identify the presence of any contaminants and ensure operational efficiency for engines.
Maintaining fuel performance and preventing damage to equipment requires examining the composition and quality of a biofuel sample. PerkinElmer examines how innovative testing systems can help labs and manufacturers reduce analysis time and aid predictive maintenance.

How hydrocarbon compatibility can create cleaner fuels

Despite the many advantages, most biofuels are not yet cost-competitive with conventional fuels. The fuel has a lower energy density than fossil fuels. Therefore, engine adjustments are required when blending large volumes of biofuels.
It is critical to ensure that resources are free of contaminants, as unclean fuel stocks can damage the internal components of engines, supply systems, and other equipment. Additionally, sulphur regulatory limits must be met by all biofuels, whether blended or not.
The presence of chlorine in some biofuels may also cause corrosion damage during and after the production stages. Furthermore, when blending fuels, the different molecules can behave differently, which requires precise management to ensure that the fuel functions as intended.
“The first and second generation ethanol or biodiesel technologies blend into the fuel, but are not the same molecules. They don't behave the same, and there are limits to how much you can blend in,” commented Professor David Bressler, professor from the Agricultural, Life & Environmental Sciences department at the University of Alberta in Canada, in a PerkinElmer Q&A.
“Even with ethanol if you get too high a blend, you start having different requirements on the engine to handle that change.
“Biodiesel, again, there's a limit to how much you can blend into the diesel resource without having problems with solubility and cloud points and so on,” he added.
“The fuels we're looking at are more compatible. They’re hydrocarbons coming from the petroleum world. When hydrocarbons blend in, they improve product quality in terms of particulate emissions.”
Several projects are already underway to produce fuels more compatible with hydrocarbons.
Prof Bressler explained that with time and advanced technologies, it is possible to create cleaner fuels from non-food-grade sources at scale using lipid-to-hydrocarbon technology (LTH).
"The LTH technology we've licensed to forge hydrocarbons is being benchmarked by third parties – we haven't built it fully commercial yet – but we’re in the ballpark of a 15% to 20% carbon footprint as compared to a petroleum base," he said.

Enabling efficient biofuels
It is essential for labs to confidently test and monitor chemical compounds crucial for biofuel research and production to meet industry performance standards.
For manufacturers, storing biofuels presents a unique set of operational problems such as blocked filters, slow-running pumps, and damage to pipework and tanks, eventually resulting in possible equipment failure.
“Biofuels have different kinds of fat composition,” explained Daan Vijfhuizen, account manager at PerkinElmer’s operations in the Netherlands.
“But also, the additives that are added and the effects this can have on motors of vehicles – that's something major. Sometimes, you could have an engine failure because the engine is not ready for the different kinds of burning levels.”
To address this issue, flashpoint testing is required. Furthermore, PerkinElmer is seeking to reduce the environmental impact of its in-service testing in lab processes – with a focus on not only throughput but also sample sizing.
“There are some features in some instrumentation like the ICP-OES where we reduce the use of argon, which is a gas that's driving the plasma,” added Vijfhuizen.

Laboratory testing for biofuels
Collaborating with a specialist provider of analytical technology and industrial lab solutions such as PerkinElmer can help overcome many challenges with biofuels, aid predictive maintenance, and validate compliance testing of finished fuels.
For instance, compositional quality checks on blended fuel products must quantify ethanol at about 92.1% of the volume, and methanol at roughly 0.1% to 0.5%, according to ASTM standard (D4806).
With its capacity to measure hydrocarbon compounds at low and high levels, PerkinElmer's gas chromatography systems' with wide-range flame ionisation detector (FID) can ease this process.
The importance of a robust GC system is a point that QA/QC labs and research institutes both agree on. Prof Bressler stresses: “I’ll be very blunt - without gas chromatography, we don't do anything.
“From the very beginning right up to last week, everything we do is monitored through gas chromatography.
“Whether it's online or sample taking, whether it's the gas or liquid phase, GC is important to characterising and monitoring what's happening within the reactor,” he stated. “We're looking at the composition, quantitating how much of everything is there.
“We're coupling that with a mass spectrometer, looking at what’s being formed.
“If it's a new compound, and we're not familiar with it, we need both the analytical information we get from flame ionisation detectors, as well as structural information from mass spec.”
PerkinElmer offers a variety of GC configurations and detectors to meet biofuel analysis requirements. Integral liquid autosamplers or automatic headspace sampling provide scalable solutions for laboratories, big or small with field-proven instrument control and data-handling software.

On the other hand, biodiesel’s high oxygen concentration can end up absorbing XRF signals and reports lower sulphur and chlorine concentrations.
Therefore, a quick and accurate test is required for authentic sulphur and chlorine levels in the biodiesel mixture. For this purpose, PerkinElmer’s ICP-OES instrument range is proven to be highly effective in detecting contaminant levels in industrial biofuels.
While a system such as PerkinElmer Spectrum Two™ FTIR Spectrometer with an ATR accessory can serve as a reliable and portable tool for determining biodiesel content according to ASTM D7371 standards. This instrument includes starter calibrations to allow for rapid deployment in the field.
“Sustainability is not only changing the kind of things you put in a car but also changing the footprint of your lab. These kinds of solutions are real game changers,” added Vijfhuizen.


For more information: Visit: perkinelmer.com/category/fuels-biofuels






191 queries in 0.348 seconds.