logo
menu
← Return to the newsfeed...

US Department of Energy to work with Gevo to optimise its ethanol-to-olefins catalyst performance

US advanced biofuels company Gevo has announced that it will be partnering with National Renewable Energy Laboratory (NREL), Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) on a project to fine-tune the composition of the catalyst used in Gevo's proprietary ethanol-to-olefins (ETO) process, in order to improve performance and accelerate scale-up efforts. 

ChemCatBio, a consortium within the US Department of Energy, awarded funding to the national labs in support of the project.

As previously disclosed, Gevo is developing its ETO technology, a process using ethanol as a feedstock for the production of hydrocarbons, renewable hydrogen, and other chemical intermediates.

The process produces tailored mixes of isobutylene, propylene, hydrogen and acetone, which are valuable as standalone molecules, or as feedstocks to produce other chemical products and longer chain alcohols.

At this time, Gevo's ETO technology has only been operated at a laboratory scale. If successfully scaled-up to commercial level, however, this technology may provide the estimated 25BGPY global ethanol industry a broader set of end-product market and margin opportunities.

In addition, according to Gevo, its catalyst is capable of converting complex mixtures of other bio-based alcohols, acids and other oxygenates to primarily propylene or isobutylene along with significant levels of renewable hydrogen.

Suitable feedstocks could include difficult to process side streams from fermentation plants, biomass gasification plants, syngas plants, municipal or industrial waste processing plants, or crude petro-based chemical streams.

Cost-competitive option

In a statement, Gevo said that it believes this catalytic technology could provide a cost-competitive option for industrial plants to upgrade lower value products and side streams, and facilitate entry into markets actively pursuing more sustainable options. These markets could include renewable fuels and plastics, renewable hydrogen and renewable downstream chemicals based on propylene or butylenes.

Susan Habas, a principal Investigator in the ChemCatBio Consortium, said: "We are excited to begin this collaboration with Gevo and believe that the state-of-the-art capabilities and expertise available through the Advanced Catalyst Synthesis and Characterization (ACSC) project within the ChemCatBio Consortium will enable us to gain a fundamental understanding of critical catalyst features that can change over time and impact the performance of Gevo's ETO catalysts.

“We'll use a combination of high energy X-ray characterisation techniques at ANL, subatomic-resolution microscopy at ORNL, and highly sensitive vibrational spectroscopies at NREL to deliver insight into the atomic-level structure of these catalysts under reaction relevant conditions. Armed with a detailed knowledge of the "working" catalyst structure we can design and synthesise catalyst composition that have dramatically improved stability and lifetime in Gevo's ETO process.”

Patrick Gruber, CEO at Gevo, said:  "Converting alcohols using catalytic chemistry has been key to our successes with jet fuel and isooctane. We have made good progress in developing the catalysts to convert ethanol to olefins and hydrogen.

“This project with the Department of Energy's national labs is expected to help further optimise these catalysts, as well as expand the feedstock base beyond ethanol, to include a variety of water-based, organic chemical streams produced in a variety of industries. Our interest is in developing the catalysts and processes to become commercially ready, so we can license them.”

This story was written by Liz Gyekye, editor of Biofuels International.

 

 





220 queries in 0.541 seconds.